

October 24 - November 11, 2016 Albuquerque, New Mexico, USA Larry Miller

Learning Objectives

At the end of this module, you should be able to:

- Discuss the role of intrusion detection sensors
- Identify exterior and interior sensors by classification
- Recognize sensor technologies
- Identify characteristics of a good intrusion detection system design
- Discuss performance characteristics of intrusion detection sensors

Role of Intrusion Detection

- PPS functions
- Detection
 - Exterior intrusion detection
 - Interior intrusion detection
 - Assessment
 - Alarm communication and display
 - Entry control
- Delay
- Response
- IAEA Nuclear Security Series No. 13 recommends an integrated system of detection, delay, and response

3

Intrusion Detection Sensors

Performance Characteristics of Intrusion Detection Sensors

- Probability of Detection (P_D)
 - $P_D = P_S * P_A$
 - where
 - P_S is Probability of Sensing
 - P_A is Probability of Assessment

Performance Characteristics of Intrusion Detection Sensors (continued)

- Vulnerability to defeat
 - Bypass: Avoiding the detection volume of the sensor by crawling, jumping, tunneling, or bridging
 - Spoofing: Tricking the sensor into not reporting an alarm
- Methods are dependent on adversary and adversary tactics
 - Given the proper knowledge, tools, and time, every sensor can be individually defeated

5

Intrusion Detection Sensors

Performance Characteristics of Intrusion Detection Sensors (continued)

- Types of alarms
 - Real Alarms Caused by an actual intrusion
 - Nuisance Alarms Occur when the sensor performed properly, but detected something other than a real intrusion attempt
 - False Alarms Generated by the sensor either because of poor maintenance or equipment failure
- All alarms are considered unknown alarms until they have been properly assessed

Exterior Sensor Classifications

- · Active or passive
- Covert or visible
- · Volumetric or line
- Line of sight or terrain following
- Mode of application
 - Buried line
 - Fence associated
 - Freestanding

7

Intrusion Detection Sensors

Perimeter Features

- Defines the boundary of the Protected Area
 - Well-defined clear zone, typically uses two fences
 - Includes sensors, lighting, assessment, access control, and delay features
 - Detects unauthorized access to the Protected Area
- Protected Area is defined in IAEA NSS-13 as an area inside a limited access area containing Category I or II nuclear material and/or sabotage targets surrounded by a physical barrier with additional physical protection measures

Perimeter Sensor Technologies

- Ported Coax
- · Fiber Optics
- Fence Disturbance
- Taut Wire
- · E-field or Capacitance
- · Active Infrared
- · Passive Infrared
- Microwave
- Dual Technology Sensors
- · Video Motion Detectors

Fiber Optic Fence Disturbance Sensor

- Fiber optic sensors are most commonly used as fence disturbance sensors
- The sensor detects vibrations associated with climbing the fence or cutting the fence

11

Intrusion Detection Sensors

Fence Disturbance Sensors

- Many different methods are available to detect vibrations on a fence. In addition to fiber optics, the following types of sensors can be used:
 - Inertia switches
 - Strain sensitive cable
 - Geophones
 - Piezoelectric sensors
- Most fence disturbance sensors use an event counter and a time window to minimize nuisance alarms

Electric Field Sensors

- Some wires transmit a small signal that other wires receive
- Coupling between the wires is changed by a person approaching the sensor

Microwave Intrusion Detection Sensor

- Transmitter and receiver are located at opposite ends of the sector
- Transmitter sends a signal to the receiver
- Received signal consists of direct beam and reflected signals
- Alarm occurs when signal is disturbed by the intruder
- Sensors must be overlapped to provide a continuous line of detection

Bistatic

Detection Zone

Monostatic Microwave Sensor

- Transmitter and receiver share antenna
- Movement in the detection zone causes a frequency shift in the returned signal
- Used to provide additional coverage
 - In areas near entry portals
 - To supplement bistatic microwaves at overlap areas

To cover terrain changes

Detection Zone Monostatic

Dual Technology Sensors

- Reduces the number of nuisance alarms
- "AND" output
- Allows sensitivity to be set higher than for individual sensors
- Example:

Monostatic microwave and passive infrared

19

Intrusion Detection Sensors

Video Motion Detectors (VMD)

- VMD monitor a scene for changes and movement
- Early systems divided the screen into small blocks in the field of interest
- Newer systems can
 - Analyze individual pixels
 - Detect when an intruder
 - Crosses a certain line
 - o Enters a certain area
 - o Travels in a certain direction

Conditions That Can Adversely Affect Exterior Sensors

Extreme weather

Animals and other nuisance sources

Terrain, soil, and ground covering

21

Intrusion Detection Sensors

Exterior Sensor Classification

	Passive	Covert	LOS or	Volumetric	
	or	or	Terrain	or Line	
	Active	Visible	Following	Detection	
Buried Line					
Ported Coax	Α	С	TF	VOL	
Fiber Optic Cables	Р	С	TF	L	
Fence Associated					
Fence Disturbance	P	V	TF	L	
Sensor Fence	Р	V	TF	L	
Electric Field	Α	V	TF	VOL	
Freestanding					
Active Infrared	Α	V	LOS	L/VOL	
Passive Infrared	Р	V	LOS	VOL	
Bistatic Microwave	. A	V	LOS	VOL	
Dual Technology	Α	V	LOS	VOL	
Video Motion	Р	С	LOS	VOL	
			LOS=	LOS= Line of Sight	

The Twenty-Sixth International Training Course

Extended Detection

- Used to extend detection beyond Protected Area into Limited Access Area and possibly beyond
- · Areas covered may
 - Be natural terrain with native vegetation and not well lighted
 - Contain more wildlife
- Alarm assessment may require thermal cameras or dispatch of patrols
- Contributes to Defense-in-Depth
- May be used as a compensatory measure to adapt to changes in threat and can help detect stand-off attacks

23

Intrusion Detection Sensors

Seismic and Magnetic Sensors

- Seismic Sensors
 - Designed to detect footsteps
 - Types
 - Geophones
 - · Pressure filled tubes
 - Buried fiber optics
- Magnetic Sensors
 - Detect intruders carrying weapons, tools, keys, or other metallic objects
 - Magnetic sensors are not commonly used in perimeter applications, because the detection range cannot be well controlled

Extended Detection Technologies

- Used to cover areas outside perimeter
 - Radar
 - · Long-, medium-, and short-range
 - Laser Radar
 - Scanning Thermal Imagers
 - Unattended Ground Sensors

. .

Intrusion Detection Sensors

Interior Sensors

- Used to provide detection for protection against sabotage and unauthorized removal
 - Protected Areas
 - Inner or Vital Areas
- · Help provide Detection in Depth
- · Useful for detecting Insider activity
 - Can help enforce the Two Person Rule
- In addition to providing detection for access to nuclear materials, interior sensors are also used to protect sensitive information

Classification of Interior Sensors

- · Active or passive
- · Covert or visible
- · Volumetric or line
- Mode of application
 - Boundary penetration
 - Interior motion
 - Proximity

Glass Break Sensors

- Acoustic glass break sensors
 - Mount on ceiling or wall
 - Respond to low frequency impact and higher frequencies of glass breaking
- Vibration glass break sensors
 - Mount directly on glass pane
 - Respond to vibration of breaking glass
- Magnetic switches are sometimes used to detect window opening

Boundary Sensors

- Break wire sensors sometimes used to detect penetration through a vent or window screen
- Vibration sensors mounted on walls to provide early warning of attempted penetration
- Jiggle switches, inertia switches, piezoelectric sensors can be used
- Many fence disturbance sensors, including fiber optic sensors, can also be used

31

Intrusion Detection Sensors

Active Infrared

- Can be used across windows and doors to detect penetration or entry
- Detects a break in one or more beams of infrared light
 - Multiple transmitters and receivers form a vertical fence
 - Pulsed synchronous techniques can reduce interference and attempted defeat from external light sources
- May be used with entry control systems to ensure only one person entered

Microwave Sensors

- Used to provide volumetric detection within a room
- · Monostatic configuration
 - Single antenna or two antennas located in the same housing used to transmit and receive
 - Detection is based on the Doppler frequency shift between the transmitted and received signal caused by an object moving within the energy field
 - Most sensitive to movement toward or away from sensor

Manufacturer's representation of maximum and minimum detection patterns. Actual size can change due to sensor settings

The Twenty-Sixth International Training Course
Page 20

Features of Good Interior Intrusion Detection System

- High P_D
- · Low nuisance alarm rate
- · Uses protection-in-depth
- · Detects tampering
- Is properly installed: No loose mountings, wiring in conduit, proper location for sensors
- · Well maintained
- Regularly tested

Features of Good Perimeter Sensor System

- · Continuous line of detection
- · Protection-in-depth
- Complementary sensors
- Clear zone
- Sensor configuration
- Site-specific system
- · Tamper indication
- Integration with
 - Assessment system
 - Barrier delay
- Maintenance and testing program

Sensor Selection Considerations

- Application
- · Operating principle
- Detection capabilities
- · Conditions for unreliable detection
- Typical defeat methods
- Major causes of nuisance alarms

The Twenty-Sixth International Training Course
Page 23

Example Perimeter System

47

Intrusion Detection Sensors

Summary

- Performance characteristics
 - P_D, nuisance alarm rate, vulnerability to defeat
- Sensor classifications
 - Passive or active; covert or visible; line of sight or terrain following; volumetric or line detection; and by application
- Exterior technology includes
 - Buried line sensors, fence-associated sensors, freestanding sensors
- Interior technology includes
 - Boundary penetration, interior motion, and proximity
- Designers should consider
 - Design goals, effects of physical environmental conditions, and interaction of system with a balanced PPS